Green Earth has become a more professional and full-fledged company since a decade development.

yinpei@green-earth.cn   +86 13823531612

In D&D, Have You Ever Led a Seige on a Fortress Or Town?

Not really. One of my characters led a defense siege, which involved crashing a wyvern into the enemy and then reasoning that an 80ft crash length with 2 units per 10 sq ft wielding spears should deal 16d6 piercing damage on top of the crash damage itself to the wyvern. Hey, if you put lvl5 PCs against an army and a wyvern plus several leader units and we had to split our party to cover bases, expect us to get creative.Assuming I can foresee the pitfalls of DMing a siege, be wary of the following:-Don't make it tedious. Siege and large quantities of enemies and allies allow for a completely different combat encounter compared to the party vs enemies until either stands victorious. Killing all foes is not necessarily the winning condition and you don't have to be the damage dealer here. Use that. Make a siege a strategic challenge, not one where the party fights tons of foes. Find some way to make it completely different and/or add new rules/system to make it different.-Give the party the leadership ability and authority. If they roleplay inspiring people, let it have effect. If they command units to do something, unless it's suicidal then the soldier will listen to the hero. Make sure that the party too has the means to play differently.-Use averages and general course of battle. Maybe with odds added with a single 1d20 roll. Don't bother rolling, but don't just blindly assume what will happen either. Look at average damage and to hit chance, calculate and see how much it takes before dying and how likely it is that someone can retreat to receive healing. Don't deal 1d10 damage to a guard, deal (av. 5 *1/2 chance to hit at DC15 vs 5 to hit) 2,5 damage for every volley to every unit. Rig the game that without the party, the allies will lose.

-The defenders will always be outnumbered, but using proper fortifications. Castles were really good to keep people out, that's why they were built. In real history, you more often starved out a castle than that you besieged it with violence. (And the pebbles that catapults can launch cannot take down the 2-3m thick castle walls. With exception of the rare wolf capatract siege engine, one simply couldn't breach a castle wall with sheer violence. Siege artillery was used to shoot at the personell on towers and the walls, not the walls themselves.

) In your game, that means 3/4th cover for anyone on the walls, unlikely to be scaled, and most combat will be around the weaker gates (Yes, a steel portcullis, guardhouse with murderholes, pitfalls and the defenders knowing you'll focus on the gates is still the weak spot of the castle more often than not).-Tell the party that this will take longer than 3 turns and leaves no room for rests, or how many rests there will be. If they burn their spell slots right away, then they're probably screwed. And if they don't switch out their one target spell for a more versatile or aoe one, then they best make it count

• Other Questions

If cosmic inflation led to the Big Bang how did that happen and, whilst you are at it, what led to cosmic inflation?

Humbled by your request I offer the followingFirst lets define cosmic inflation- per wikiImage result for cosmic inflation- In physical cosmology, cosmic inflation, cosmological inflation, or just inflation is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 1036 seconds after the Big Bang to sometime between 1033 and 1032 seconds.Inflation (cosmology) - Wikipedia, the free wikipedia.

org/wiki/Inflation_(cosmology)WikipediaMost astro-cosmos science believes the Big Bang was a massive high density high temperature matter-energy which exploded-spread throughout (vacant) space- per wiki The Big Bang theory is the prevailing cosmological model for the universe from the earliest known periods through its subsequent large-scale evolution.567 The model accounts for the fact that the universe expanded from a very high density and high temperature state,89 and offers a comprehensive explanation for a broad range of phenomena, including the abundance of light elements, the cosmic microwave background, large scale structure and Hubble's Law.10 If the known laws of physics are extrapolated beyond where they have been verified, there is a singularity. Some estimates place this moment at approximately 13.8 billion years ago, which is thus considered the age of the universe.11 After the initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements later coalesced through gravity to form stars and galaxies.and they believe the cosmic inflation of the initial big bang continues today described as expansion of the universe at an increasing rate.So, the big bang is part of the expansionist beliefs, yet they say little about how the initial matter/energy came about or why it was contracted so to have a big bang.

And if you pay attention to expansionists beliefs, any contraction of the universe back to its original state, as before the big bang, will never happen. Which might lead the critical thinker to ask them: How could that big bang happen under expansionists (dark energy) beliefs/theory??I w/b smiling in the back ground thinking, Harry is quite the 5 year old thinker a lot like my young daughter-astrophysicist wanna be.Under the universe is expanding at an increasing rate belief (dark energy, Hawking radiation etc etc) it leads us to believing expansionists, the universe is expanding, going out and ending in a whimper (cold and dark).

This modern topic, the universe is expanding at an increasing rate, is sciences biggest blunder, bar none.Per my ToE: The universe did go through inflation, cosmic inflation, and since inflation we soon evolved to be a contraction universe (purely by gravity/electromagnetic), contracting at an increasing rate (now), and the evolution will end where the big bang beganthe ToE explains a closed or cycle/recycle universe (simplistically for now)Ergo my answer to your question what led to cosmic inflation? and to complete the cycle If cosmic inflation led to the Big Bang how did that happen or reworded to how could the big bang have happened with only inflation and expansion at an increasing rate theories . a big bang could not (logically) happen without contraction.

Pls see:Please give your comments/review and how you might help with the ToE we need talent/you to understand and join inIt take just 3.7 % of those involved to diligently promote their worthy cause to change the whole. I want you in that percentile.douG

------

Do you think Led Zeppelin is a classic metal band? Why or why not?

I do not think Led Zeppelin are a classic metal band for many reasons!Although I can see why some may consider them to be a metal band, I also see it as a bit of a sweeping overview/statement. For a start, the song "Communication Breakdown" (although slighter faster than Black Sabbath's "Paranoid") from the debut album could be seen as redolent of an early Who or Kinks punk excursion - but their contribution/s to the metal community are/is by far outweighed by blues songs, folk/country ballads and virtually everything in between. Does "Stairway To Heaven" constitute a metal song - despite the fact that metallers have occasionally released softer songs in the past?No, they rose above metal in many ways. At the risk of stereotyping, the majority - if not all - of metal bands tend to stick to a specific formula (see * below) and Led Zeppelin really had no interest in going down any particular musical path; they were far more interested in blazing trails of their own.Of course guitarist Jimmy Page's interest in the Occult fuelled erroneous beliefs/gossip about Satanic connections such as back masking in "Stairway.." - and heavyweight songs such as "Dazed & Confused", "Whole Lotta Love" (blues song reinterpretation), "Heartbreaker", "Bring It On Home" (all 'Punk' or 'Heavy' Blues, really), "Immigrant Song", "Kashmir" "Trampled Under Foot", "In My Time Of Dying" "Nobody's Fault But Mine" (last 2 re-working of old blues songs) & "Achilles Last Stand" certainly contribute to the category, but the majority of other songs on albums (especially the bulk of Led Zeppelin III) are as far removed from metal as it is possible to be!When Page was asked about heavy metal in reference to one of LZ's heavier songs, he appeared a little irritated & replied that it didn't sound heavy metal to him; when asked if they were responsible/major contributors to the genre, singer Robert Plant replied with words to the effect of 'I think that crown should go to Black Sabbath'; several years ago there was a documentary tracing the evolution of heavy metal and when Page & Plant were asked to be interviewed - they did not want to be associated with the genre at all.

I think the views of the Mick & Keith/John & Paul/Axl & Slash of Led Zeppelin say it all, really.For what it's worth, my opinion is that Led Zeppelin wipe the floor with any metal band; a few years ago I revisited the video of Judas Priest's "Breaking The Law" - & Spinal Tap was the first thing that entered my mind. I won't comment on comparisons with Iron Maiden, Metallica or Slayer (see * above) - but if pressed about Tool (genre-defiers themselves) or Muse (symphonic rock?), that would as pointless as comparing any 'modern' band with the Beatles ("Are ********* better than the Beatles or Nickelback?").

This pic makes them a metal band.

This one doesn't.

Nor does this one.

In D&D, Have You Ever Led a Seige on a Fortress Or Town? 1

HOT PRODUCTS
no data
no data
GET IN TOUCH WITH US
no data
recommended articles
News Projects
End of Halogen Light Bulbs Spells Brighter and Cleaner Future
End of Halogen Light Bulbs Spells Brighter and Cleaner Future
Halogen light bulbs will be banned from September 2021 with fluorescent light bulbs to follow, cutting emissions and saving consumers on their energy bills. ●Halogen light bulbs to be banned from this September – with fluorescent light bulbs to follow suit ●shift to LED bulbs will cut 1.26 million tonnes of CO2 – the equivalent of removing over half a million cars from UK roads ●new rules part of tighter energy efficiency standards for electrical appliances as the UK builds back greener, helping save British consumers £75 a year on their energy bills The government has announced plans today (Wednesday 9 June) to end the sale of halogen light bulbs from this September, as part of the UK’s wider efforts to tackle climate change. Legislation being brought forward this month will also include the removal of fluorescent lights from shelves from September 2023. Currently, around 2 thirds of bulbs sold in Britain are LED lights, making a considerable impact in improving the energy efficiency of the country’s buildings. They last 5 times longer than traditional halogen lightbulbs and produce the same amount of light – but use up to 80% less power. The UK began phasing out the sale of higher-energy halogen lightbulbs in 2018. The new legislation would mean retailers will no longer be able to sell the majority of halogen bulbs for general household use in the UK from 1 September. To help people make the switch, ministers are also announcing that all light bulbs will start to feature new energy efficiency advice via ‘rescaled’ energy labels on their boxes. The labels will simplify the way energy efficiency is displayed on a new scale from A-G, doing away with the A+, A++ or A+++ ratings. The new labels will raise the bar for each class, meaning very few bulbs will now be classified as A, helping consumers choose the most environmentally friendly bulbs. This measure is expected to mean that LED light bulbs will account for 85% of all bulbs sold by 2030. In addition, the government also plans to start phasing out the sale of high-energy fluorescent lightbulbs, with a view to bringing an end to their sale from September 2023. Taken together, these new rules will mark a significant shift to more energy efficient and longer lasting LEDs and will stop 1.26 million tonnes of carbon being emitted every year - the equivalent of removing over half a million cars from the UK’s roads. The move is part of a package of energy efficiency improvements to electrical appliances, which will save consumers an average of £75 a year on energy bills. Energy Minister, Anne-Marie Trevelyan, said: We’re phasing out old inefficient halogen bulbs for good, so we can move more quickly to longer lasting LED bulbs, meaning less waste and a brighter and cleaner future for the UK. By helping ensure electrical appliances use less energy but perform just as well, we’re saving households money on their bills and helping tackle climate change. Today’s plans also include a ban from September on the sale of lighting fixtures with fixed bulbs that can’t be replaced – meaning the fixtures have to be thrown away. Fixtures such as these account for 100,000 tonnes of electrical waste every year – out of a total 1.5 million tonnes of electrical waste each year. Minister for Climate Change, Lord Martin Callanan, said: Flicking the off-switch on energy inefficient light bulbs is a simple way that households can save money at the same time as saving the planet. Phasing out halogen bulbs in favour of LED alternatives that last longer, are just as bright and cheaper to run, is another way that we are helping tackle climate change. Chief Executive of Signify UK, which owns Philips lighting, Stephen Rouatt, said: We welcome the UK government’s next step in the transition towards more sustainable lighting products. Using energy-efficient LED equivalents for halogen and fluorescent lighting on an even broader scale will significantly help the UK on its journey to decarbonisation, as well as lowering the annual electricity bills for consumers. Overall, the government’s package of energy efficiency improvements will also cut 8 million tonnes of carbon emissions in 2021 by reducing the amount of energy products consume over their life-time – the equivalent of removing all emissions from Birmingham and Leeds each year.
2021 09 27
read more
Bright Idea: New LEDs Can Detect Off Food And Lethal Gases
Bright Idea: New LEDs Can Detect Off Food And Lethal Gases
New LED technology has potential to benefit firefighters, miners, the military, plumbers and households.(Source:University of Melbourne) Your smart device could soon be even smarter with a new infrared light emitting diode (LED) that is ‘tuneable’ to different wavelengths of light – it could enable your fridge to tell you when your food is going off and your phone to tell you if that Gucci purse is real. The technology has been developed by the University of Melbourne, the Lawrence Berkeley National Laboratory, the University of California, Berkeley, and the Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems (TMOS). They have come up with a device that could identify a suite of gases, potentially including lethal ones, improving the safety of firefighters, miners, the military, and your local plumber. The work appeared in the journal, Nature. Infrared (IR) spectrometers are common laboratory equipment that can identify different materials by analysing their infrared signatures, which is invisible to the human eye. Just like an AM radio can be tuned to different frequencies of radio wave, IR spectrometers can be tuned to different wavelengths, giving a broad-spectrum analysis of a gas sample. However, these machines are bulky and expensive and not usually practical to take out of the laboratory and into the field. “Our new technology bonds a thin layer of black phosphorus crystals to a flexible, plastic-like substrate, allowing it to be bent in ways that cause the black phosphorus to emit light of different wavelengths essentially creating a tuneable infrared LED that allows for the detection of multiple materials,” University of Melbourne Professor Kenneth Crozier said. “This technology could fit inside smartphones and become part of everyday use.”For example, the bacteria found in meat release various gases as they multiply. The presence of these gases is a good indication that the meat is spoiling and is no longer fit for consumption.“The device placed inside a fridge could send a notification that meat is going off. When pointed at a handbag, it could reveal whether the bag is made of real leather or a cheaper substitute,” said Professor Crozier, who is also the Deputy Director of TMOS.Current materials that are used for IR photodetectors and light emitting devices can be difficult to manufacture, in large part due to the need for multiple layers of perfectly linked crystals. This new black phosphorus technology requires just one layer allowing the device to be flexible, giving it unique properties when bent.“The shift in black phosphorus' emission wavelength with bending is really quite dramatic, enabling the LED to be tuned across the mid-infrared,” said Professor Ali Javey, from the University of California at Berkeley, whose group led the work.Importantly, the device could make the work of firefighters, miners and military safer, allowing them to identify potentially lethal gases from safe distances as the ultra-thin, ultra-light devices can be placed on small drones. Flying such a drone over a building fire could tell firefighters what dangers they face and equipment they’ll need.The low-cost technology could also make its way into devices for use by plumbers and building managers.“Our IR photo detectors could be integrated into a camera so that we could look at our phone screen and ‘see’ gas leaks or emissions and be able to determine what kind of gas it is,” Professor Crozier said.
2021 09 27
read more
Gallium Oxide White LED Prospects
Gallium Oxide White LED Prospects
Saga University in Japan has reported work towards white light-emitting diodes (WLEDs) based on rare-earth (RE)-doped gallium oxide (Ga2O3) [Yafei Huang et al, Appl. Phys. Lett., v119, p062107, 2021]. The researchers adopted a vertical integration strategy with Ga2O3 layers doped with thulium (Tm), europium (Eu) and erbium (Er) grown on top of each other. The team comments that “films grown by lateral integration are deposited side-by-side, while the co-doping of multiple rare earth elements into the same host will unavoidably degrade the crystal quality and, thus, induce undesirable threshold voltage and luminous efficiency.” The vertical strategy leads to more compact devices without compromising crystal quality. The team adds: “On the other hand, compared with phosphor-assisted WLEDs, direct white light emissions are achieved from single-material-based LEDs in this work without using additional red, blue or green phosphors, which can greatly reduce the energy re-absorption effect between different phosphors.” Such energy re-absorption would naturally impact power efficiency. The researchers also see the phosphor-free approach based on single-material-based WLEDs with direct primary color mixing as more conducive to displays based on smaller-pixel micro-LEDs. Although rare-earth doping has been tried in gallium nitride and zinc oxide devices, there are problems such as needing high voltages (~100V) or poor color balance due to spectral gaps. The Saga team sees β-Ga2O3 as “an ideal host for rare-earth ions benefiting from its ultrawide bandgap (4.9eV), which is advantageous to improve the thermal stability and luminous ability of rare-earth dopants at room temperature”. According to the researchers, at present, “there are no reports available related to full-color (white) LEDs based on rare-earth-doped Ga2O3.” The doped Ga2O3 layers were deposited on p-type gallium arsenide, p-GaAs (111), using alternate-target pulsed laser deposition (PLD) at 500°C. The Ga2O3 targets were variously doped with rare-earth oxides: 1wt.% Tm2O3, 1wt.% Eu2O3 and 5wt.% Er2O3. The laser light came from a krypton fluoride (KrF) excimer laser emitting deep-ultraviolet light at 248nm wavelength. The PLD was carried out in an oxygen atmosphere at 0.1Pa pressure. The samples consisted of 150-periods of the sequence of the three types of Ga2O3 doping (Figure 1). The growth process lasted 150 minutes. Material analysis suggested that the atomic concentrations for the doped layers were 0.3% Tm, 0.5% Eu and 2.3% Er. Figure 1: Schematic structure of LED-A based on Ga2O3:(Tm+Eu+Er)/GaAs heterojunction. The LEDs featured an indium tin oxide (ITO) transparent conductor n-electrode and gold (Au) p-electrode. The ITO was applied with direct-current sputtering; the gold with electon-beam evaporation. Atomic force microscopy showed a sample surface “filled with uniformly distributed grain-like structures” with a root-mean-square roughness of 10nm. When subjected to a forward voltage of more than 8.8V, the current begins to increase rapidly. The researchers also note that the electroluminescence (EL) is only observed under forward bias, suggesting that “simultaneously injected electrons and holes are indispensable for the EL”. The researchers associate the emitted light with 4f transitions from the Eu3+, Er3+, and Tm3+ ions (Figure 2). Figure 2: (a) Current-voltage characteristics curve of LED-A. Inset: semi-log characteristics and digital photograph of LED-A at 70mA. (b) EL spectra under different operating currents. (c) EL intensities of emissions at 475, 529, and 615nm as function of injection current. (d) CIE chromaticity coordinates under different currents.   The various peaks associated with the different ions were: 461 and 475nm with Tm3+; 529, 550, and 656nm with Er3+; 590, 615, and 712nm with Eu3+. Although the emissions somewhat overlap, the Tm ones are mainly in the blue range, Er green, and Eu red. The combination gives white light. The researchers explain: “Due to the existence of oxygen vacancy defects in the film, the simultaneous red, green, and blue emissions are supposed to be triggered by the defect-assisted energy transfer from the Ga2O3 host to RE3+ (Eu3+, Er3+, and Tm3+) ions.” On the basis of previous reports, the researchers expect the emission to be relatively independent of the temperature environment since the complete outer 5s and 5p orbitals shield the 4f shell from such influence. The positions of the peaks were found to vary little with changing current injection. However, the strength of the emissions did vary, with the balance shifting from red to green and blue as the current increases. The color content of the main device reported, LED-A, shifted from pink to white with injections from 40mA to 80mA. The correlated color temperature (CCT) varied from 2370K to 7592K, respectively, a shift from a warm to cold tone. The team reports: “For instance, the emitted light at 55mA locates at a warm-white point with CIE coordinates of (0.3739, 0.3410) and CCT of 3926K, which meets the requirements for indoor lighting applications.” The researchers also see 65mA as providing “superior” CIE coordinates, (0.3329, 0.3335), but 5479K CCT, suitable for indoor/outdoor cold-white illumination. Table 1: Thicknesses of doped Ga2O3 layers. The color balance was also varied in hardware, with the researchers producing four other device structures with different layer thicknesses of the various components (Table 1). These resulted in different color balance behavior (Figure 3). Figure 3: CIE chromaticity diagrams for (a) LED-a, (b) LED-b, (c) LED-c, and (d) LED-d under different operating currents.     The author Mike Cooke is a freelance technology journalist who has worked in the semiconductor and advanced technology sectors since 1997.  
2021 09 27
read more
Retailers Employing NICHIA LED Technology Are Ahead Of The Game
Retailers Employing NICHIA LED Technology Are Ahead Of The Game
After completing a successful pilot project, German retailer EDEKA equips its latest store entirely with NICHIA technology Tokushima, Japan – 3 August 2021: LED manufacturer NICHIA is a technology leader in highly efficient human centric lighting and the replication of natural light. Its innovative LED technologies are increasingly being used in retail to push the shopping experience to the next level. The most recent project is an EDEKA store in Wiesbaden-Sonnenberg, Germany, which opened its doors in May and is equipped with a lighting solution entirely based on NICHIA technology. The owners of the store engaged Prof. Dipl.-Phys. Werner Lorke and his interdisciplinary team of experts to plan and implement the project. As part of his consulting work with iO Interdisziplinäre Objekte, the physicist focuses on product and exhibition design and brings together the fields of architecture, technology, and art. He was tasked with developing and employing a lighting concept that presents the store’s merchandise in the best possible way and creates a positive shopping experience for the customer. To do this, he selected NICHIA's ‘Light so Good' technologies, which significantly enhance the quality of light: 2-in-1 tunable white, Optisolis, and Vitasolis.For the Wiesbaden-Sonnenberg project, Lorke drew, among other things, on the experience he had already gained over several years with another EDEKA branch in Wiesbaden. Above average sales figures in this store prove that the influence of light on people is enormous. Thus, lighting generally represents a great opportunity for retailers. "We are proud to say that all our activities here, in terms of introducing new illumination, have more than paid for themselves within a few months," he emphasizes. "Based on this experience, our advice to retailers, in general, is to look at lighting as a sales tool rather than as an expense."In the confectionery department, for example, a solution with adjustable color temperature has proven successful. Thanks to 2-in-1 tunable white LED and COB, it is possible to create good contrast between the merchandise on display and the aisles, as well as to install dynamic lighting in which the color temperature changes throughout the day. Optisolis products are ideal for illuminating goods such as fruit and vegetables. They can be used to produce a light spectrum that comes closest to that of the sun, while at the same time UV emission is essentially non-existent. As a result, it has a positive effect on perishable goods while fruit and vegetables shine in the best possible light. Vitasolis provides brilliant white light and a wide wavelength spectrum for pleasant illumination. A strong cyan component compared to other products has a positive effect on the human circadian rhythm. Aisles illuminated with Vitasolis in combination with Optisolis product provide shoppers with an image that is inspiring and very pleasant – a solution ideally suited, for example, in the dairy section. High CRI Optisolis illuminating the dairy products presents the merchandise more naturally while the natural white light coming from Vitasolis is suitable for illuminating the aisle. Lorke applies Vitasolis for two reasons: one, it allows for a good contrast between space and merchandise thanks to its broad spectrum and low contents of yellow spectrum. Two, its quality of light is extremely easy on the eye. As such, the technology also perfectly meets the needs of any counter areas. Here, the comfortable lighting makes waiting times more pleasant for visitors. A total of around 500 luminaires from all three 'Light so Good' technologies have been installed at EDEKA in Wiesbaden-Sonnenberg."Ultimately, each product group in the store requires its own lighting concept," states Lorke. "The secret lies in the optimal mix of color temperature, color spectrum, and contrast. At the moment, I don't see any alternative on the market to NICHIA products for achieving such a high quality of light as we have managed to create here."Note: Vitasolis and Optisolis are trademarks owned by NICHIA.
2021 09 27
read more
Scientists Develop Efficient GaN-based Green LEDs
Scientists Develop Efficient GaN-based Green LEDs
A research team led by Shengjun Zhou at Wuhan University has reported developing efficient GaN-based green LEDs on sapphire substrate. They proposed a hybrid nucleation layer consisting of sputtered AlN and mid-temperature GaN components to boost quantum efficiency of GaN-based green LEDs.The team says the hybrid nucleation layer provides a promising approach for the pursuit of efficient III-nitride emitters in the green-to-amber region.Currently, the development of efficient III-nitride emitters in the full visible range is very attractive. The integration of multicolour III-nitride emitters can enable efficient and precise management of the mixing spectra to realize high-resolution displays and various smart lighting applications. However, owing to the poor efficiency of III-nitride emitters in the green-to-amber region, these promising applications have been largely delayed.The researchers have fabricated high-efficiency InGaN/GaN green LEDs on sapphire substrate by using the novel hybrid nucleation layer. A stacking fault band structure was generated at the interface of hybrid nucleation layer and GaN, which facilitated the misfit stress compensation. Benefiting from the early misfit stress relaxation, they achieved reduced dislocation density and residual stress in the green LEDs. An efficiency improvement of ~16 percent was demonstrated in the mass production by using the hybrid nucleation layer. This gain is attributed to the increased localisation depth and spatial overlapping of the electron and hole wave functions.‘Toward efficient long-wavelength III-nitride emitters using a hybrid nucleation layer' by Bin Tang et al, Optics Express, 29(17), 2021 WHU team boost quantum efficiency using hybrid nucleation layer
2021 09 27
read more
Candidates For Next-gen LED-based Datacoms
Candidates For Next-gen LED-based Datacoms
UK researchers show how organic semiconductors, CQDs and perovskites can be used in LED-based optical communications systems A new paper from the University of Surrey and the University of Cambridge has detailed how two relatively unexplored semiconducting materials can satisfy the telecommunication industry's hunger for enormous amounts of data at ever-greater speeds.LED-based communications techniques allow computing devices, including mobile phones, to communicate with one another by using infrared light. However, LED techniques are underused because in its current state LED transmits data at far slower speeds than other wireless technologies such as light-fidelity (Li-Fi).In a paper published by Nature Electronics, the researchers from Surrey and Cambridge, along with partners from the University of Electronic Science and Technology of China, examine how organic semiconductors, colloidal quantum dots (CQDs) and metal halide perovskites (perovskites), can be used in LED-based optical communications systems.The research team explored efforts to improve the performance and efficiency of these LEDs, and they considered their potential applications in on-chip interconnects and Li-Fi.Aobo Ren, the co-first author and visiting postdoctoral researcher at the University of Surrey, said:“There's excitement surrounding CQDs and perovskites because they offer great promise for low-power, cost-effective and scalable communications modules.“Although the conventional inorganic thin-film technologies are likely to continue to play a dominant role in optical communications, we believe that LEDs based on these materials can play a complementary role that could have a sizeable impact on the industry.”Hao Wang, the co-first author and PhD student at the University of Cambridge, said: “Future applications of LEDs will not be limited to the fields of lighting and displays. The development of LEDs based on these solution-processable materials for optical communication purposes has only begun, and their performance is still far from what's required. It is necessary and timely to discuss the potential strategies and present technical challenges for the deployment of real-world communication links using these LEDs from the material, device and system aspects.”Jiang Wu, the corresponding author from the University of Electronic Science and Technology of China, said: “Photonic devices for the Internet of Things (IoT) and 6G communication systems need to be high-speed, low-cost and easy to integrate. Organic semiconductors, CQDs and perovskites are promising materials that could be used to complement and/or compete with conventional inorganic counterparts in particular optoelectronic applications.”Wei Zhang, the corresponding author and Senior Lecturer from the University of Surrey, said: “IoT and 6G communication systems represent a trillion-dollar market in the next few years. We are proud to collaborate with the top research teams in this field and accelerate the development of emerging data communication technology for rapid entry to the market in the next decade.”'Emerging light-emitting diodes for next-generation data communications' by Aobo Ren et al; Nature Electronics 2021
2021 09 27
read more
Seoul Semiconductor 's Innovative WICOP LED Technology
Seoul Semiconductor 's Innovative WICOP LED Technology
Seoul Semiconductor Seeks Greater Market Share in Global High-Power LED Market Valued at USD 2 Billion with Innovative WICOP LED Technology. ANSAN, South Korea--Seoul Semiconductor Co., Ltd. (KOSDAQ 046890), a leading global innovator of LED products and technology, announced that it has introduced high-power LED package ‘Z5M4’ with WICOP technology, one of the second-generation technologies in the LED industry. Z5M4 is 10% brighter than the conventional products and is easy to replace the existing high-power products. Accordingly, Seoul Semiconductor seeks to expand its market share in the USD 2 billion worth of global high-power LED market for street lighting, bay-lighting, and horticulture lighting, which has been formed by vertical chip manufacturers.   Comparison of WICOP and product design stolen under the name of COB or CSP * Vertical chip: Excellent heat dissipation structure with vertical electrodes design * COB (Chip on Board): A structure that reduces the volume by connecting wires to a semiconductor chip directly mounted on a printed circuit board * CSP (Chip Scale Package): Silicon semiconductor technology that makes BGA (Ball Grid Array) on silicon semiconductor chips and assembles them in a clean room Z5M4 LED with WICOP technology is designed to be 1:1 compatible easily with existing high-power products, and its excellent heat dissipation structure makes it a high-power LED package suitable for high-brightness and high-efficiency. It offers an industry-leading high luminous efficiency of 175 lm/W and can be used for up to 100,000 hours. Seoul Semiconductor has been leading the global market with its core patented technology, which obtained a permanent injunction against Philips TV product and 13 automotive lighting brand LED products infringing WICOP patents in 2019 and 2021.“Seoul Semiconductor’s Z5M4 LED for high-power lighting will quickly encroach the USD 2 billion market dominated by vertical technology companies. We plan to apply this product not only to the high-power lightings, but also to the  electronic device flash and automotive lightings, followed by SunLike LED, a natural sunlight spectrum LED technology,” said an official of Seoul Semiconductor. Seoul Semiconductor’s Z5M4 package with WICOP technology About Seoul Semiconductor Seoul Semiconductor is the world’s second-largest global LED manufacturer, a ranking excluding the captive market, and has more than 10,000 patents. Based on a differentiated product portfolio, Seoul offers a wide range of technologies, and mass produces innovative LED products for indoor and outdoor lighting, automotive, IT products, such as mobile phones, computer displays, and other applications, as well as the UV area. The company’s world’s first development and mass production products are becoming the LED industry standard and leading the global market with a package-free LED, WICOP; a high-voltage AC-driven LED, Acrich; an LED with 10X the output of a conventional LED, nPola; a cutting edge ultraviolet clean technology LED, Violeds; an all direction light emitting technology, filament LED; a natural sun spectrum LED, SunLike; and more.
2021 09 27
read more
Question with LED and Zener Diode?
Question with LED and Zener Diode?
Get a zener diode 3.5 volts higher than the one you now have1. LED Gloving Slow Shutter Speed?This is an example of rear curtain sync. Set camera to rear curtain sync Camera on tripod Low ISO Small aperture Dark conditions, the only light you want to record is the light from the gloves and the final flash. Flash mounted on camera Shutter on 'B' setting Remoter shutter release. Method. Open shutter and lock open. Move the gloves around. Close shutter. Just before the shutter closes the flash will fire, recording the face etc. Rear curtain is good because the light trails are behind the movement which is opposite to the normal flash sync. Chris2. Will the Germany led European Union be a Fourth Reich?Is EU under German domination becoming a 4 rth Reich?A supranational union is a type of multinational political union where negotiated power is delegated to an authority by governments of member states. The concept of supranational union is sometimes used to describe the European Union (EU), as a new type of political entity. (wikipedia).Germany currently is maintaining a balance of trust and power, and has no interest to get more power at the expense of trust. And of course we have interests, economical interest3. What is the brightest LED lantern?Brightest Led Lantern4. Powering an LED with transistor in saturation mode"Please do not tell me to buy other transistors" ...that's what I wanted to suggest: Use a MOSFET instead of a NPN, rated at 150 mA (or more). The gate/base of a MOSFET draws less (usualy much less) than 1 mA. Otherwise the darlington pair is another solution if for some valid reason you have to keep these specific transistors. Your calculation about R2 is correct5. what kind of LED bulb do i need for these tail lights?do no longer forget water. I particularly have 13 geckos. My abode geckos drink water i've got sprayed into the tank off the glass and flowers and my leopard geckos drink water from a bowl. My geckos purely consume crickets and different small bugs. considering they only consume at night I feed them at night. attempt conserving slightly carrot or a wedge of an orange interior the tank for any crickets that are not getting eaten perfect away so the crickets do no longer nibble on the geckos. additionally, an undertank heater on one section is significant. reptiles choose their tanks to have a heat section and a cooler section. they choose a mild on one portion of the tank additionally. Blacklights paintings nicely for my nocturnal reptiles6. the beatles vs. led zeppelin????john lennon jimmy page paul mccartney (unless we are going on bass skills alone) john bonham sgt peppers led zeppelin 2 the white album rubber soul led zeppelin a day in the life kashmir whole lotta love helter skelter black bird over the hills and far away well, after splitting the answers almost exactly 50-50 i am just as undecided as when i started. i like both for mostly different reasons.7. How to toggle LED on button press?At the moment, you've got two main problems. Firstly, both your if statements are being triggered one after the other. This is because the first if statement sets x to 0, which is part of the condition the second if statement looks for. The second problem is that you are not monitoring the previous state of the button. buttonState will appear HIGH every time round loop, even if the button has been held down for several seconds. The result is that the output pin will be quickly getting turned on and off all the time. What you need to do is store the last known state of the button. On every iteration of the main loop, only respond to the button if it's currently HIGH, and if it was LOW last time round the loop. You also need to make sure your two if statements are mutually exclusive; i. e. if you trigger one then do not trigger the other by mistake too, or it will cancel it out.Something like this should work better:As noted elsewhere, you still need to debounce the button, otherwise you are likely to get some false-positives. That can be done in hardware or software. A really simple way to get around it temporarily is to put in a delay of several milliseconds every time you detect the button changing state. It's not perfect, but it might be enough to get you started
2021 08 24
read more
no data
Green Earth is continuously approaching different markets in various ways, we will keep on researching and designing innovative products, bring a better light to human beings. 
no data
QUICK LINK
CONTACT US

Market cooperation : Pei Yin

E-mail : yinpei@green-earth.cn

Phone : +86 13823531612

Supplier Cooperation : Zhi Song

E-mail : songzhi@green-earth.cn

Phone : +86 13588306599

ADDRESS
5-7F, Block 1, Industrial Park 29, Makan Village, Xili Town, Nanshan District, Shenzhen,China. 518055

Copyright © 2021 GREENEARTH  |  Sitemap

chat online
Please message us and we’ll be sure to respond ASAP, what product you intrested in?